

DDT
(Dunion's Debugging Tool)

by

Jim Dunion

Program and manual contents © 1982 Jim Dunion

r •
Copyright notice. On receipt of this computer program and associated documen-
tation (the software). the author grants you a nonexclusive license to execute the
enclosed software. This software is copyrighted. You are prohibited from reproducing,
translating, or distributing this software in any unauthorized manner.

'" .

Distributed By
The ATARI Program Exchange

P.O. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above, or call toll-free:

800/538-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, Inc.

ATARI®
ATARI 400'" Home Computer
ATARI 800'" Home Computer
ATARI 410'" Program Recorder
ATARI 810'" Disk Drive
ATARI 820™ 40-Column Printer
ATARI 822™ Thermal Printer
ATARI 825™ 80-Column Printer
ATARI 830™ Acoustic Modem
ATARI 850™ Interface Module

Printed in U.S.A.

,

• Contents

Introduction .

The art of creative computer program debugging. .. 1
Required accessories , 2
Optional accessories 2
Contacting the author 2

DDT user's guide 3

DDT's design philosophy 3
The DDT screen display 4

Register display 5
Display window 5
Stack display .. 6
Minisymbol table 7
Breakpoint table ...•.. 8
Command window. .. 8
Trap. 8

Breakpoints 9
Function key controls 9
The command interpreter 10

Entering a value 10
Examine 11
Continue 11
Go 11
Breakpoint 11
Register 12
Deposit 12
Pull window down 12
Push window up 12
Interpretive mode 13
Window 13
Trap 13
Search 13

DDT entry points 14

Flash entry 14
Warm entry 14
Breakpoint entry 15

How to use DDT 15

The examples 15
Loading DDT into computer memory 15
Attaching your program to DDT 16
Interactions with DOS 18

Appendix - technical details 19

Keyboard scanner 19
Single stepping 19
DOTs use of system resources 20
Display window movement 20
Things to watch out for 21
Listing of SHELL.MAC 22

•

•

•

IMPORTANTI

DUPUCATE
THIS

DISKETTE
BEFORE
USING

THIS PROGRAM!

This APX diskette is unnotched to protect the software against accidental erasure.
However, this protection also prevents a program from storing information on the
diskette. The program you've purchased involves storing information. Therefore,
before you can use the program, you must duplicate the contents of the diskette onto
a notched diskette that doesn't have a write-protect tab covering the notch.

To duplicate the diskette, call the Disk Operating System (DOS) menu and select
option J, Duplicate Disk. Youcan use this option with a single disk drive bymanually
swapping source (the APX diskette) and destination (a notched diskette) until the
duplication process is complete. Youcan also use this option with multipledisk drive
systems by inserting source and destination diskettes in two separate drives and
letting the duplication process proceed automatically. (Note. This option copies
sector by sector. Therefore, when the duplication is complete, any files previously
stored on the destination diskette will have been destroyed.)

Introduction

The art of creative program debugging
In the simplest terms, a computer program is a sequence of operations that cause the
computer to do something. Programming is the task of preparing instructions for the
computer to execute. That seems simple enough, yet programming maintains an aura
of mystery about it, so that even the most experienced programmer approaches
programming with deference and hesitation. Try to get a programmer to commit to
when a program will be ready, and you'll see what I mean. Even harder is getting a
programmer to keep the few commitments made, because experience has burned
many a programmer who promised the world but delivered the Bronx. Dunion's First
Law is that things are never as simple as you think they're going to be. In programming
this means programs invariably take longer to program than they should-to get them
working, anyway. What's so difficult about programming computers? The answer is
mainly that as humans, we aren't used to thinking as precisely as one has to in
programming computers. Even the most rational human finds his thought processes
tempered by emotion, intuition, and insight; the resulting melange comprises more
than any strictly rational, logical (linear if you will) sequence. Unfortunately,
computers don't work that way (yet); they must be instructed in precise terms. And
with machines that carry out some half million instructions every second, you don't
have to be too far wrong in a program before disaster strikes. By the time you notice
something is wrong, it has already happened. The problem is going from the
conceptual to the concrete, from taking an idea and turning it into a program.

Who hasn't thought of the better software mousetrap? But it's easier thinking up ideas
than it is programming them. It doesn't have to be that way. As any craftsman will tell
you, much of the problem lies in not having the right tools. Programming as a human
enterprise is somewhere between an art and a science, and no one is sure exactly
where the line is drawn. Programming is hindered by inadequate software tools, but
much of the problem is the attitude and approach towards the act of programming
itself. I consider myself to be as much an artist as a technician; each new program is a
new work of art. Not only does the program have to work correctly, but it also has to
look right and feel right. The computer is an instrument of imagination, a paint brush
beyond comparison, a pencil filled with millions of untold tales-the ultimate
instrument, waiting for the performer to bring it to life. I call this attitude the art of
creative computer programming.

Much as I hate to admit it, mistakes work their way into my programs, particulary if I'm
trying something new-working with a real-time system, perhaps, with color graphics
and sound. A system like the ATARI Computer is a good example. To reach the full
potential of this system, we sometimes haveto use assembly language programming.
At this level, every mistake is magnified a thousandfold, and finding those mistakes is
tough. It could be a syntax error, a semantic error, a timing error, a hardware error, an
alpha ray zap, ..., the list goes on and on. As Piet Hein said in one of his Grooks,
"Problems worthy of attack, prove their worth by hitting back". What we need is
something that can let us do a better job of debugging, some creative debugging.
What we need is something like - Dunton's Debugging Tool.

Introduction 1

Required accessories
• 16K RAM
• ATARI 810 Disk Drive
• ATARI MACRO Assembler and Program-Text Editor' (CX8121)

Optional accessories
• ATARI BASIC Language Cartridge (for examples)

Contacting the author
Users wishing to contact the author may write to him at:

1196 Borregas
P.O. Box 427

Sunnyvale, CA 94086

2 Introduction

•

•

•

DDT user's guide

DDTs design philosophy
The features of the ATARI Computer set it apart from other current personal
computers. Unfortunately, trying to get to these features from high-level languages
like BASIC or PILOT is frustrating. In many instances, the only answer is to write at
least a portion of the program in assembly language. That still wouldn't be too bad if
we had decent assembly language development tools, but until very recently we
didn't. That situation changed with the release of the ATARI MACRO Assembler, a
very powerful programming tool. However, considering that assembly language
programs are wont to be bug-ridden at first (Le., full of programming mistakes), the
MACRO Assembler emphasizes a serious need. Namely, what do we do about
debugging assembly language programs? The ideal solution, of course, would be to
have access to someth ing like a logic analyzer or other type of hardware development
system. Most of us don't, however. So what to do? The answer seemed to be to
develop a debugging tool specifically designed for use with the MACRO Assembler.
Thus was born Dunton's Debugging Tool (DOn.

DDT is a flexible, extensible, source language debugging tool. That means you
generally assemble DDT along with your source code as a sort of parasite. You can
attach DDT to whatever is running inside the ATARI Home Computer. These
attachments or "hooks" let DDT coexist with your test program. This flexibility is
useful in a couple of ways. First, it lets you decide where DDT should reside in
memory, which may vary, depending on exactly what is being debugged. Second, it
lets you use the assembler to set up several of DDT's features. Note, however, that
DDT is flexible enough that you don't have to assemble it with your program each
time. The examples included on the DDT diskette will give you an idea of some ways to
set up DDT (i.e., attach DDT to a program).

Most program bugs arise from assumptions (either explicit or implicit) that prove not
to be true. If this is the case, a debugging tool that forces you to ask to see various
locations, registers, breakpoints, and so on, misses a crucial point. Many times you
have no idea at first what is causing a problem. The central idea in DDT is to place as
much information as possible on the screen and then let your visual pattern
recognition system (Le., your eyes and right side of the brain) go to work. In short, let
the computer do what it does best and let human programmers do what they do best.

A consequence of this approach is that DDT centers around control of its display
screen. This control is coupled with the ability to change and monitor the internal state
of the machine easily so that you can get a much clearer picture of exactly what's
going on inside the system at any instant. Most of the time, correcting a program bug
is easy; finding it is the trick. That's where DDT comes in.

The next section describes each of DDT's features. Following that is a section
explaining how to get started using DDT and describing the examples. Finally a
technical appendix contains more information on how some of DDT's features are
implemented. Skim the entire manual to get an overview of DDT, and then go back and
read each section more carefully. Finally, before you begin experimenting, take a
blank diskette, format it, and write new DOS files on it. Then copy the source or object
code modules you're interested in. If you want to experiment with one of the object
code modules, rename it as AUTORUN.SYS. Then all you have to do is turn the
machine off and back on to load and initialize the code automatically.

DDT User's Guide 3

The DDT screen display
DOTs screen display shows you the internal state of the machine. The screen is
divided into several display areas, each of which shows a different aspect of what's
going on inside the computer at that instant.

The display areas are called:

Register display - a display of the current contents of 6502 registers

Display window - a window into memory

Stack display - a display of the top 15 items on the system stack

Minisymbol table - a table of names and values of current symbols

Breakpoint table - a table of the settings of breakpoint registers

Command window - a window showing keyboard commands entered

The following sections describe each display area. Figure 1 is an example of a typical
DDT display screen.

LOC VAL INSTRUCTION STK VAH. VALUE
IE2F 20 81 LOMEM 33EO
IE30 75 96 MEMTOP 34E4
IE31 20 23 SYMBI B8
IE32 00 PLA 45 LABELl A9
IE33 AA TAX 76 LABEL2 00
IE34 68 PLA 97
IE35 A8 TAY
IE36 68 PLA
IE37 40 RTI
IE38 4C JMP LABELl
IE39 BE
IE3A FF
IE3B A9 LDA #53
IE3C 53
IE3D 30 BMI 2 IE41
BKPI BKP2 BKP3 BKP4 BKP5 BKP6 TRPI TRP2

ABCD 0000 0000 0000 0000 0000 ABC6 0000

PC ACC NV BDIZC X Y SP COMMAND

IE32 IE 00110100 00 12 F9 S 302122

Figure I Typfcal Screen Display

4 DDT User's Guide

•

Register display

Display window

The lower part of the display screen displays the current contents of the 6502
processor registers. Whenever you enter DO T, the contents of its registers are copied
into register shadows, which are then displayed. These shadows are used to restore
the 6502 registers before control is released back to the program being tested.

These registers have their contents shown in hexadecimal notation:

PC = program counter, a two-byte value
ACC = Accumulator
X = X index register
y = Y index register
SP = Stack pointer

The Processor status register (NV SOl ZC) is shown in binary form, where

N = Negative flag
V =Overflow flag
B = BRK instruction flag
D = Decimal mode flag
I = Interrupt disable flag
Z = Zero flag
C = Carry bit

The display window forms a window into the system memory address space. This
window is in the upper left-hand portion of the display screen, and occupies more
than a quarter of the screen. The window is set upon entry to DDT, or may be moved
by single stepping, and by either the "E", the up-arrow, or the down-arrow command.

The window can be thought of as having one of three possible filters in front of it. You
can change these filters by using the "W" command (see "The command interpreter"
section). The first filter, which is set upon initial entry to DDT, is an opaque filter. It has
a summary of operating instructions written on it. With this filter in place, many
commands will appear to do nothing.

The second filter is a disassembly filter. A "greater than" sign (>) points to what is
called the current position. When you enter DDT, this will correspond to the value in
the PC. The current position may be modified by the "E", up-arrow, or down-arrow
command.

The third filter is a hexadecimal filter. The window shows the hexadecimal value and
ATASCII representation of up to 48 memory locations. Again, the" > "sign indicates
the current position.

There are always three bytes, in hexadecimal form, shown above the current position.

In the disassembly display, each line from the current position down is shown in a
similar format: first the hexadecimal address of a location, then its contents, and then a
disassembly readout. Standard 6502 mnemonics are used, with conventional address
mode indications.

DDT User's Guide 5

Stack display

Several features aid debugging. A mnemonic shown in inverse video indicates that a
breakpoint has been set at that location. In fact, if you look at the actual contents of •
that location, it will be a O. A BRK instruction in inverse video means that particular
BRK instruction was not placed there by DDT. This would occur, for instance, in
looking at memory that is all zeros.

Second, if the instruction is one of the branch instructions, an up-arrow or down-
arrow is added to the disassembly display to indicate the direction of the conditional
branch. The computed address of the conditional branch location also displays.

Finally, if the address portion of an instruction contains an address defined in the
minisymbol table, the symbol name will display rather than the hexadecimal value.
You can use the symbol feature to locate references to a symbol in the code, or simply
as labels to make the disassembly listing more readable. If the hexadecimal filter is in
place, each line after the current position line will start on an even four-byte boundary.
This means the current position line can have from one to four values on it. The
current position line values are always left justified.

The middle portion of the upper display screen shows the top locations in the system
stack. If the stack pointer is set at $EO or higher (i.e., the stack has less than 15entries),
then only those values currently in the stack will display. The display is a top down
representation. If more than 15 entries are in the stack, then only the top 15 display.

Examples

6 DDT User's Guide

SP=$FF SP=$FE 89 SP=$FD 89 SP=$FD
A8

B9 SP=$EF
A8
A7
A6
AS
A4
A3
A2
Al
AD
89
B8
B7
86
B5

A8
A7
A6
AS
A4
A3
A2,
Al
AD
89
88
B7
86
85
84

Minisymbol table
The upper right-hand portion of the screen contains a minisymbol table with room for
15 variables. This feature lets you monitor the contents of selected variables without
worrying about where they physically reside. Two-byte values display in high-low
order (even though they're generally stored in low-high order). The symbol table is
located three bytes past the beginning of the DDT code. The first three bytes are a
JMP DDT ENTRY instruction. The minisymbol table has 135 locations reserved for it.
Each symbol in the table is in the following form:

NAME

6 characters for
symbol name

LOCATION

symbol address
2 bytes

BYTES to SHOW

lor 2
I byte

An example of setting up a minisymbol table using the ATARI MACRO Assembler
(AMAC) is the following:

ORG DDT

DB 'VARI '
DWVARI

DB I

; This sets AMAC positon to start of symbol
; table
; Exactly 6 characters please!
; Let the assembler figure out what value
; to put here.
; either a I or a 2 to indicate that the
; variable should be shown as a single-byte
; or double-byte value.

You can also use the minisymbol table to keep an eye on standard system variables:

DB 'COLPF2'
OW 710
DB I

You can monitor a small area of memory by setting up several dummy variables, each
pointing to one or two successive bytes of memory.

The minisymbol table has other serendipitous uses. For example, you can define a
program label as a symbol. The value shown will be meaningless, but the disassembly
listing in the display window will be more readable:

DB ':LOOPl'
OW :LOOPI
DB 1

DDT User'sGuide 7

Indeed, you can even define a symbol as "------" or some such form to
separate different usage areas of the symbol table. Finally, you can use the mini symbol •
table to help locate a portion of your code. To do this you need to set up a dummy
storage location:

LCODE OW :COOE

You would then define the symbol variable in the table as:

DB 'LCOOE'
DW LCOOE
DB 2

The value displayed will then be the address of the :CODE module.

You need not define any more symbols than you want to use. Examine some of the
example programs to get a better idea of how to use the minisymbol table in various
ways. Note that your definitions should be the last thing included in the shell program.
This is to make sure the symbol definitions occur after DDT, which initially sets up the
table as follows:

ORG:SSYMT
ECHO 15
DB '
OW 0
DB 1
ENDM

Breakpoint table

The breakpoint table is located just above the register display. There are six user-
definable breakpoints and two trap breakpoints, each of which will be shown with its
current setting. If a register is clear, i.e., not set, then the value shown will be 0000. If a
breakpoint register is set, the value in that register will be the location of where in
memory a BRK instruction has been placed. However, in the case of the trap
breakpoints, no BRK instruction is used. These values are used in interpretive mode to
create the equivalent of a break instruction.

Command window

The extreme right-hand part of the bottom of the screen is devoted to the command
window, the area showing the commands you type in.

Trap

•

The trap breakpoints are reserved for interpretive mode. In this mode, breakpoints in
memory are ignored, since DDT already has control of the system. Instead DDT
checks the values in the TRAP registers. If either equals the address of the next
instruction to be executed, DDT will halt the interpretive mode. This allows you to
place pseudo breakpoints in ROM locations, for instance. Then it becomes much
easier and quicker to reach a certain spot in the ROM code by setting a trap, and
running in interpretive mode than by single-stepping up to the desired location. •

8 DDT User's Guide

, Breakpoints
One of the most common debugging techniques is to use what is known as a
breakpoint. Suppose you're trying to debug a program that is clobbering the system.
One of the first things you can do is look at your source code and say, I wonder if it ever
makes itthis far. Youthen place a "breakpoint" or literally a BRK instruction that will call
DDT. Thus, when you run your program you will find out one of two things. If your
code hits the breakpoint and calls DDT, then the problem is beyond that point.
However, if the program bombs and it never makes it to the breakpoint, you know the
problem is prior to that point. You have now begun localizing the bug. Repeating this
process can eventually locate where in your code the problem resides.

The breakpoint mechanism is the most common way for you to transfer control to
DDT. When a program is running, executing a BRK instruction calls DDT, provided
DDT has been initialized. This causes the DDT screen display to activate, and also
turns on the keyboard and the function key command interpreter. The breakpoint
remains set even after it has been encountered in code execution.

After a breakpoint has been encountered, and control transfers to DDT, there are
several ways to leave DDT. Using the "C" command sets a breakpoint at the current
location and then continues code execution. Pressing the START key simply
continues code execution. The "G" command transfers control to another location.

You can set up to six breakpoints at a time. The location of the breakpoints is shown in
the breakpoint register display. If a breakpoint is clear (i.e., not set), it displays as0000.
Setting a breakpoint register to a new location automatically restores an existing
breakpoint, if one is already set forthat register. Note also that the "C" command uses
an internal system breakpoint O. If any breakpoint (including the "C" breakpoint itself)
is encountered and control passes to DDT, then the internal "C" breakpoint is cleared.

Function key controls
DDT uses the START, SELECT, and OPTION keys for special effects.

START
Use this key to continue code execution at the location indicated by the PC register.
All 6502 registers are updated with the current displayed contents before control is
transferred.

SELECT
Use the SELECT key to toggle back and forth between the DDT screen and whatever
screen dynamics were active before DDT was called. An attempt has been made to
allow most alternative features, such as mixed display lists, VBLANK routines,
alternate character sets, display list interrupts, playfield size changes, and player-
missiles.

OPTION
Use this key to single step the processor. This causes the disassembly filter to be
turned on, but will not automatically toggle the display screen. See the section of the
appendix titled "Single stepping" for more information.

DDT User's Guide 9

The command interpreter
The command interpreter lets you issue keyboard commands to DDT. The command
window is in the lower right-hand portion of the display screen. The left-hand part of
this display shows the register state of the machine.

Each command is a single keystroke. However, depending on the command,
additional arguments might be required. If the key typed is not a valid DDTcommand,
DDT ignores it.The DDT .keyboard commands are as follows:

E -caddr» .
C ..
G <addr> .
B < 1-6> .caddr» .
R <PC,A,P,X,Y,S> .c valc-

- Examine address addr
- Continue, and leave breakpoint
- Go to address addr
. Breakpoint 1·6 to location addr
- Register selected is loaded with val

D <hstring> .
t .
t .
I .
W .
T <1-2> ,<addr> .
S chstrtng» .

- Deposit hex string
. Pull display window down
- Push display window up
- Interpretive mode
-Window filter toggle
- Trap at address
- Search for hex string

These commands are described in the following pages.

Entering a value

Several of the keyboard commands require that you enter one or two values. f
Terminate a value entry bytyping a delimiter-either a space, a comma, or a RETURN.
When two values are needed, as with the Breakpoint command, a comma displays
after you type the first delimiter, regardless of which delimiter you typed. Typing a
delimiter without entering a value results in DOTs ignoring the entire command
(exceptions-see the Breakpoint and the Trap Commands).

The explanations that follow use these abbreviations:

= an address value, up to 4 hexadecimal digits
(sorry, HEX only)
either a 1,2,3,4,5 or 6
either PC, A, P, X, Y or S
a single-byte value, up to 2 hexadecimal digits

= a value, which can be a byte value or an
address value, depending on the register chosen
a hex string up to 10 characters (i.e., 5 hex
digits)

chstrtng»

<1-6>
<PC,A,P,X,Y,S>=
<byte>
<val>

caddr»

The command interpreter (CI) ignores keys other than 0-9 and A-F for value inputs.
Use the DELETE key to erase a character.

Each time DDT expects a value, the CI sets up a field size corresponding to the
maximum number of hex digits you should enter (e.g., 4 digits for an address value).
When you reach this number, DDT allows no additional digits. You can, however,
delete characters, and then enter new characters. Deleting past the starting point of
the value field results in DOTs erasing the entire command. •

10 DDT User's Guide

Examine E <addr >
Use the Examine command to set the display window to view an area of memory. The
extreme left-hand edge of the display window has a "greater than" sign (;>) in the
fourth row, pointing to the current position that was entered as the address in the "E"
command. Note that the "E" command does not change the state of the display window
filter, nor does it affect which instruction will be executed next by a single step
command.

Continue C
Use the Continue command to return to the code that called DDT and continue
execution. It functions similarly to the operation of the START key in that execution
continues at the address indicated by the PC register. However, "C" also leaves an
additional "system" breakpoint behind. Internally, this is accomplished by single
stepping past the instruction, and then setting an internal, invisible breakpoint register
to the location just left. Only one internal breakpoint can be maintained. If one has
already been set, it will first be restored before setting the new one. This breakpoint
will be cleared whenever any breakpoint (including the C breakpoint itself) is
encountered during code execution.

Go G <addr>
Use the Go command to begin execution at a specific location in memory. Before
control passes to this location, all registers are updated based upon the current
contents of the displayed registers. This is true for all commands involving code
execution.

Breakpoint B <1-6> , <addr >
Use the Breakpoint command to set one of the six breakpoint registers to a location. If
you enter a value other than a 1 - 6 for the breakpoint register, the command is
terminated immediately. Note that two values (the breakpoint register number and the
breakpoint location) are required for this command. You must end both fields with a
delimiter (e.g., type "B", then "1", then SPACE, then "AOOO", and then press RETURN).
Remember, DO Ttreats all delimiters (space, comma, and RETURN) identically. When
a breakpoint is set, that location should show up in the breakpoint register display.
Physically, a "0" for the BRK instruction is stored in memory at the requested location.
If an Examine command is issued to look at that part of memory, a "0" will be seen, even
though the proper mnemonic is shown in the disassembly. If a breakpoint is set at an
examined location, the mnemonic displays in inverse video. If a breakpoint register is
already in use when a new breakpoint is requested, the instruction at the old
breakpoint is first restored.

To clear a breakpoint register and restore the source code, type any delimiter after
selecting the desired breakpoint register (e.g., type "B", then "1", then comma, and then
comma to clear breakpoint 1and restore the source code). Trying to clear a breakpoint
that is not set will not harm anything. Note, however, that trying to set a breakpoint in
ROM, in hardware registers, or in non-existent RAM may do some interesting things,
but probably not what you wanted.

DDT User'sGuide 11

Register R <PC, A, P, X, Y, S >, <val>
Use the Register command to modify the contents of any of the 6502's registers. After
you type "R", ooTaccepts only a "P", "A", "X", "Y", or "S". Any other character results in
oors terminating the command. If you type an "A", "X", "Y", or "S", DDT allows no
character other than DELETE until you type a delimiter. If you type a "P", DDT allows
an additional "C" to indicate the Program Counter. "P" by itself indicates the Processor
Status register. "A", "P", "X", "Y", and "S" will accept only two hex digits (i.e., one byte),
while "PC" will accept four digits. Note that this command requires two separate values
and two separate delimiters.

Warning. Indiscriminate use of this command, particularly with "P", "PC" and "S" can
really mess things up.

Deposit D <hstring >
Use the Deposit command to place a string of bytes in memory. You may enter a string
of hexadecimal values up to 10 characters (5 hex bytes). The values entered will be
placed in successive locations, starting at the current position indicated in the display
window and replacing whatever was there. The input string is decoded two characters
per hex byte at a time. If an odd character is left at the end, ooTwil1 interpret it as the
low order nibble of a hex value. For example, entering a string of 01AABO results in
three bytes (01, AA, and BO) being placed in memory. However, entering 01AAB
results in 01, AA, and OB being deposited. Note that depositing a byte or a series of
bytes doesn't move the display window; you do this with the Examine or the Push or
Pull window commands.

Pull window down-s-down-arrow
Use the Pull window command to pull the display window down. Depending on the
display filter in place, this command pulls the window down by one byte (hex filter) or
by one full instruction (disassembly filter). Because the autorepeat on the keyboard is
active, continuing to press the down-arrow key (pressing the CTRL key isn't
necessary) continues to pull the window down.

If you hold down the SHIFT key while typing the down-arrow character, the screen is
pulled down a full screen each time.

Push window up-s-up-arrow

Use the Push window command to push the display window up. Depending on the
display filter in place, this command pushes the window up by one byte (hex filter) or
by one full instruction (disassembly filter). Because the autorepeat on the keyboard is
active, continuing to press the up-arrow key (pressing the CTRL key isn't necessary)
continues to push the window up.

12 DDT User's Guide

If you hold down the SHIFT key while typing the up-arrow character, the screen is
pushed up a full screen.

A problem occurs, however, when you arbitrarily examine an area of memory with the
disassembly filter in. If you try to push the window up, there isn't enough information
to be able to tell if the preceding instruction was one, two, or three bytes long. DDT
keeps track of how many bytes the window is moved each time you pull the window
down. Thus, you can push the window back up if you have previously pulled it down
past an instruction or group of instructions. Refer to the section in the appendix titled
"Display window movement" for information on this feature.

Interpretive mode I
Use the Interpretive mode command to place the system in an automatic single step
mode. After each instruction is interpreted, the screen display is updated if the DDT
screen is turned on. The display window is automatically placed in the disassembly
mode. Pressing the BREAK key halts the interpretive mode. It's possible to run ROM
programs, such as BASIC, interpretively, but problems with the display can arise in
trying to run portions of the operating system interpretively. The TRAP register is used
for setting up the equivalent of a breakpoint in this mode. Interpretive mode runs much
faster if the user screen is selected instead of the DDT screen because DDT doesn't
have to update its screen if it isn't active.

Window W
Use the Window command to change the "filter" over the display window. "W" toggles
between the filters. Three filters are available, an opaque filter with DDT operating
instructions printed on it, a disassembly filter, and a hexadecimal filter.

TrapT <1-2> , <addr>
Use the Trap command to set one of the trap breakpoints to a specific location. The
address entered should show up in the proper TRAP register. Trap works only in
interpretive mode. To clear the trap, type "T", a "1" or "2" for the TRAP register you want
to clear and then type any two delimiters. A 0000 should show up in the register.

Search S <hstring >
Use the Search command to locate a specific sequence of hex characters in memory.
You may enter a hex string up to 10characters (5 bytes). DDTsearches memory from
the current position indicated in the display window, up through memory, and to
location COOO. Since this represents memory address space that is unavailable in the
system, DDTattempts no search match in this area. You can still look through the as
ROM by examining F111, for example, and then starting the search. Memory from
F111 to FFFF will first be searched, and then 0000 to COOO. If the search is successful,
the display window is repositioned. If it is unsuccessful, the command window is
simply cleared for the next command.

DDT User'sGuide 13

DDT entry points
You can enter DDT in are three ways:

FLASH ENTRY
WARM ENTRY

BREAKPOINT ENTRY

Flash entry

This entry point allows immediate entry to DDT regardless of other circumstances.
This is a single keyboard special character, and is initially set up as [CTRL) [SHIFT)
[ESC) (i.e., pressing the CTRL, the SHIFT and the ESC keys at the same time). When
DDT is initialized, the operating system code that looks at the keyboard is modified so
that it looks for the special character first before handling normal keyboard input. If
this character is found, DDT is entered immediately, through the flash entry point.

The "C" command, or pressing the START key passes control to wherever the
processor was when the DDT special character was typed. For more information on
the flash entry mechanism, see the "Keyboard scanner" section in the appendix.

Warning. Never use the flash entry twice to get to DD Twithout first exiting DD T.Doing
so would make it impossible to return to the original calling point.

When you use the flash entry, you will notice that the current position indicated is at a
code sequence as follows:

PLA
TAX
PLA
TAY
PLA
RTI

This is a portion of the DDT code that simulates a breakpoint to enter DDT. To get to
the actual machine code instruction that would next be executed, do six single steps.

Warm entry
This entry point is the starting point for the DDT code. The first three bytes are a JMP
DDT ENTRY instruction. If this location is called via a JSR instruction, then the START
key exit passes control to the calling point. This lets you call DDT at various program
locations for setting up breakpoints, changing values, and so on.

Example

-- your code --

PHA ;this doesn't mean anything, only an example
JSR DDT

-- Pressing START will return here --

14 DDT User's Guide

,

f

When you use the warm entry, the current position will be pointing to an RTS
instruction. As with the flash entry, this is actually a portion of DDTused to implement
the entry mechanism. Single step once to get to the application code that would next
be executed.

Breakpoint entry

Breakpoint entries are the most common way to enterDDT. The breakpoints first have
to be set up via a flash or warm entry to DDT. After they are set, DDT is called if those
specific instructions are executed. Exits from DDT breakpoints return to the code
sequence where the breakpoint was located. Notice that the breakpoints remain in
place unless they're explicitly cleared. This is true even if a breakpoint has been
tripped.

Recall also that if the TRAP register is set in interpretive mode, then attempting to
execute the instruction at that address halts the interpretive mode. Thus, to move past
a trap breakpoint in interpretive mode, you have to either clear the trap or single step
past the instruction that was trapped and then enter interpretive mode.

How to use DDT

The examples
DDTcontains several program examples of how to set up DDTin different ways. Turn
on your computer and play with DDT as you read along.

Loading DDT into computer memory
1. Insert the ATARI BASIC Language Cartridge into the cartridge slot of your

computer.

2. Have your computer turned OFF.

3. Turn on your disk drive.

4. When the BUSY light goes out, open the disk drive door and insert the DDT
diskette with the label in the lower right-hand corner nearest to you. (Use disk
drive 1 if you have more than one drive.)

5. Turn on your computer and your TV set. The program will load into computer
memory and display the READY prompt of ATARI BASIC.

So far everything seems normal, right? You might even want to type in a short
program, such as :

10 FOR 1=0 TO 1000
20 PRINT "1=";1
30 NEXT I
40 GOTO 10

Type RUN and start the program. Now then, press the CTRL key, the SHIFT key and
the ESC key at the same time. Eh voila! Welcome to Dunton's Debugging Tool, better
known as DOT.

DDT User's Guide 15

There are several assembly language program "shells" you should look at. This
requires that you use the ATARI Program-Text Editor (MEDIT). The basic idea behind
the shell concept is to leave the actual source code modules (DDT.MAC,
DDTLST.MAC, and the source code module you're debugging) as undisturbed as
possible. With a shell, you can make most necessary changes (re-orging, and so on) in
the shell program and not change the other files. Each of these shells is described in
the next section.

Attaching your program to DDT
The assembly language program named SHELL.MAC is the general program you
should use in assembling your program with DDT. A printout of this program is
included in the appendix. Take a look at this printout. As you can see, the SHELL
program is itself a step-by-step guide to attaching DO Tto your program. Let's say you
have a program you normally assemble using the MACRO Assembler via a source line
command of:

D:YOURPROG.MAC S=D:SYSTEXT.MAC

The general procedure you would follow would be to load SHELL.MAC with MEDIT,
edit it by following the instructions in SHELL.MAC, save the file, and assemble it with a
source line of:

D:SHELL.MAC S=D:SYSTEXT.MAC.

This will produce an object file called SHELL.OBJ, which in general can be renamed
as an AUTORUN.SYS file that loads automatically when you turn your computer on.

Several other shell programs illustrate how to customize this process. Each of the
shell programs describes how it has been customized. To see how any of these
versions works, rename the desired object code file as AUTORUN.SYS and reboot the
system (e.g., rename SHELL1.0BJ as AUTORUN.SYS). Unfortunately, due to space
constraints, I wasn't able to leave object code modules for each of the shells.
SHELL2.0BJ exists as the current AUTORUN.SYS file, and SHELL3.0BJ isn't there at
all. To produce this file, you would need to assemble SHELL3.MAC.

SHELL1.MAC is a stand-alone version designed primarily to let you experiment with
DDT. The variables in the minisymbol table are some of those the operating system
uses in controlling the system. This version of DDT can be helpful in understanding
some of the graphics and other features of the system. You can easily examine and
change the screen memory, display lists, shadow registers, and so on. Youmight even
place a small machine-language program in memory by using the Deposit command.

You should note a couple of things about this version. First, if you use the START key
to exit DDT, or the "C" command, then the DUP.SYS file is loaded, overlaying DDT.
After this happens, you must reload DDT to re-enter it.

Second, since the WARMSTART mechanism is used to enter DO T, you should not use
the flash entry to re-enter DDT. Doing so makes it impossible to get to DUP.SYS via
the normal exits.

16 DDT User's Guide

,

SHELL2.MAC is a version that lets you examine the inner workings of a BASIC
program. Notice that the variables defined in the minisymbol table are the ones BASIC
uses to manage memory. One interesting thing you can do is to start a BASIC
language program running, press CTRL-SHIFT-ESC to get to DDT, press SELECT to
see the BASIC screen, and then press the letter I to run the BASIC program
interpretively. This effectively slows BASIC down by a factor of a hundred or so. Thus,
you can let the BASIC program run until it reaches a spot you're interested in, and then
press BREAK to stop the interpretive mode and return to the DDT screen. Then, use
DDT to examine exactly what BASIC is doing internally.

SHELL3.MAC is a version designed for testing an assembly language subroutine. A
routine on the diskette called PSEUDO.MAC is an implementation of a pseudo
random number generator. Essentially, this routine generates a pseudo random
number less than or equal to a variable "upper limit." For more information on how this
subroutine works,look at the source code using MEDIT. After assembling SHELL3.MAC,
rename the object file, SHELL3.0BJ, as AUTORUN.SYS .Then, rebooting the system
will load DDT and PSEUDO, initialize DDT, and then do a JSR DDT for initial
breakpoint setting, and so on.

With this version, you should start to get an idea of the power of DDT. First, if you're
testing a subroutine dealing with numerical values (as does PSEUDO), then you
needn't set up an involved printing routine to check the output of the routine. It's very
simple to place the result in a location and set up that location as an entry in the
minisymbol table.

Next, notice how the minisymbol table can be useful in several ways. You can use a
symbol to monitor a routine's output (e.g., VALUE), input parameters (e.g., UPPER &
DEGRAN), and even small areas of memory (e.g., RANNUM + RANNUM2 = 4
contiguous bytes). However, you can just as easily define the symbols as locations
(Le., labels) in your source code. Their value on the screen will probably be
meaningless, but the disassembly listing becomes much more readable. You can even
waste a variable calling it " " to separate symbol variables from symbol labels.

To get an idea of how to use DDT, copy SHELL3.0BJ as AUTORUN.SYS, remove any
cartridge and reboot your system. It should come up directly into DDT. Type "W" to
toggle the screen, then press the OPTION key twice to single step to the start of the
driver code for PSEUDO. Set a breakpoint at the location where there is a JMP LOOP
instruction (you can look for this location by pulling the display window down; it
should be at $4018). Now press the START key. The screen should flash and DDT
should return with the PC set at $4018. Continue to do this. Note each time that the
contents of VALUE are less than or equal to UPPER. Now experiment. Set the TRAP to
$4018, then run interpretively, and so on.

SHELL4.MAC is a version designed fordebugging a hybrid program (i.e., part BASIC,
part assembly language). The object code here consists of the pseudo random
number generator routine, the link to BASIC, and DDT. To use this version, rename
SHELL4.0BJ as AUTORUN.SYS and reboot the system. When you see the READY
prompt, type RUN 'D:PSEUDO' , and press the RETURN key.

DDT User'sGuide 17

In the BASIC program PSEUDO, you can reset the "seed" or starting point for the
pseudo random number generator. Try setting the seed to some value, and entering f
values for the upper limit and number of values to generate. Note the pseudo random
numbers generated. Now go back and reset the seed to the same value you chose
earlier. Also pick the same values you had selected for upper limit and pseudo random
numbers to generate. You should get the same list of numbers. This is, of course, the
power of a pseudo random number generator-the ability to generate numbers
repeatedly that appear to be random.

Interactions with DOS
If you decide to set the origin of DDrto sit right on top of the FMS portion of DDT, be
aware that this is exactly where DUP.SYS loads. Thus, if you try to load DUP.SYS
(using the DOS command from BASIC, for example), it will overlay DDT. No real
problems will ensue from this operation, but you might run into some difficulty in
trying to reload DDTfrom DOS. For instance, you must have created a MEM.SAV file
before the operating system will let you overlay DUP.SYS. In general, if you need to
use DUP.SYS , then you should ORG DDT beyond where DUP.SYS will load.

You can call DOS from DDTin several ways. One simple way is to have an instruction
in your code like:

DOSCALL JMP (DOSVEC) ;DOSVEC = SOA

Then, to call DOS, use a DDT "G" command with the address of DOSCALL. ,

•
18 DDT User's Guide

Appendix - Technical details

Keyboard scanner
During DDT initialization, the system keyboard vector is redirected to a preprocessor,
which checks for the DDT flash entry special character. If this character is seen,
control passes to the flash entry point; otherwise, control passes to the normal
keyboard processing routine.

When writing applications, you need to understand a couple of things about this
preprocessor feature.

1. Keyboard interrupts must be enabled.

2. The character watched for is stored in an internal table and may be changed.
In the source code, the table location is DBCHR, which is initially set to $DC.

Single stepping
DDT is equipped with a single step mechanism for detailed examination of code
execution. This is invoked by pressing the OPTION key orvia the "I" command. The "I"
command activates a single step automatic mode, which is terminated by pressing the
BREAK key.

When a single step request is issued, an examination is made of the instruction
pointed to by the PC register. If it is not a "forbidden" instruction (i.e., one that could
mess up DDT), it is transferred to a test bed, the 6502 registers are loaded from the
register shadows, and then the instruction is executed directly. After execution, the
register state is saved, the screen display is updated, and control returns to DDT.

If DDT cannot allow the instruction to be executed directly (e.g., a JMP instruction),
then the instruction is simulated and the saved register state and display are properly
updated before control is returned to DDT. Forbidden instructions include all branch
instructions, JMP, Jump indirect, JSR, RTI, RTS and BRK.

If a breakpoint is encountered during single stepping, DDT gets the actual instruction
that should be at that location before executing it. If, for some reason, the BRK
instruction you are single stepping past does not correspond to one of DOTs
breakpoints, an Nap is loaded instead. This is also the case if the instruction is
undefined.

The branch instructions are handled in a hybrid manner. The actual branch
instruction is placed in a test bed, as shown below. Thus, after execution of the branch
instruction, DO T can infer where the branch instruction with the real offset would have
gone. This value is used to update the resultant address that will be placed in the PC.

Appendix - Technical details 19

Branch
Conditional
Instruction

04

NOP

JMP
to
DDTl

JMP
to
DDT2

DDTs use of system resources
The DDT code itself occupies about 6K of RAM, and the display screen another 1K.
Extreme care has been taken to ensure that DDT runs parallel to normal system
functioning. In interpretive mode, for example, you should be able to use all the
system's features (including the keyboard and the function keys), except for the
BREAK key, which DDT reserves for itself. One underlying assumption in DDT is that
your program is going to be generally operating according to the protocols
established by the existing operating systems. There are six page zero locations that
DDT uses when active, 2-7. The operating system will not be using these during the
time DDT is active. In the event that your program uses these locations (naughty!
naughty!), they are saved upon entering DDTand restored upon exit. However, if they
are examined while DDT is in control, they will reflect DDT values, and not your
program's values.

DDT has only two global variables, DDTI and ECODE, both of which are used in
SHELL.MAC. Otherwise, all variables are local. The shell programs themselves also
use global variables DDT and ICODE.

Display window movement
DDT maintains a "pull stack" while the disassembly filter is in place. This means that
each time you pull the display window down, DDT places the numberof bytes that the
window was pulled in a stack. Thus, when you want to push the window up, DDT
checks to see if there are any values left in the pull stack. If so, you can push the
window up. If not, nothing happens. The pull stack is cleared whenever DDT is
entered, or when an Examine command is typed. To conserve memory, four pull
values (which will be a 1,2, or 3) are packed into each byte in the stack. A total of 64
bytes are reserved for the stack. Thus you can pull the window down 256 times before
the stack runs out, at which time the first values in the stack are lost and you can't back
up as far. In computer terms, the stack is implemented as a circular buffer.

20 Appendix - Technical details

"

,

Things to watch out for
To my continued dismay, a few gotchas remain in DDT. In general, these occur when
you are single stepping or running interpretively. If the interpreted code messes
around with the display list, or with ANTIC, or CTIA/GTIA, then you might end up with
a scrambled DOT screen. Usually this isn't fatal, just distracting. To restore the normal
DDT screen, press the BREAK key to halt the interpretive mode, and then press the
SELECT key twice.

Trying to do I/O from disk or any other real time activity in either interpretive mode or
single step mode is probably going to produce a mysterious occurrence. You should
set up breakpoints so that this type of 110 is done in real time, and then call DDT.

Be wary of using the flash entry point (entered by pressing CTRL-SHIFT-ESC) to
re-enter DDTafter it has been entered (but not exited). This will definitely confuse the
system.

Some programs that you want to debug may turn out to be too big to assemble along
with DDT. If this occurs, AMAC will simply lock up and die. You can handle this by
assembling one shell containing DDT and another containing the test program. True,
you will have to do a little planning to make sure the ORG values are correct, and that
the test code knows where DDT (and consequently the minisymbol table) and the
initialization code are located. But this isn't difficult to do once you've played around
with DO T for awhile. After you've produced the two object code modules, rename the
one containing DDTas AUTORUN.SYS. Then copy the otherto AUTORUN.SYS with
the append option. DUP.SYS will tack your test codetothe end of the DDTcode. Don't
worry about the fact that the segments of code may be ORGed at different areas. The
system binary loader will handle the segments properly. All you have to do is be sure
the proper minisymbol table is loaded last, and the last segment has the proper
initialization address loaded into the RUN vector.

Finally, going back and forth between DDT and DUP.SYS (if they overlay each other)
seems to introduce unknown things into the system. If this happens, try pressing
SYSTEM RESET first, and if this fails, simply reboot the system.

Appendix - Technical details 21

*** ••*.***•••*******•• ** ••••••* •• *** •• *******************

THIS IS THE GENERAL SHELL PROGRAM

YOU SHOULD ASSEMBLE THIS PROGRAM
TO ATTACH YOUR TEST PROGRAM
TO THE DEBUGGING SYSTEM.

REFER TO THE DDT DOCUMENTATION
FOR INSTRUCTIONS ON CUSTOMIZING
THIS PROGRAM FOR YOUR PARTICULAR
NEEDS.

********.**************••******.**************.**.*****

STEP I

FIRST YOU HAVE TO DECIDE WHERE
DDT AND YOUR CODE WILL RESIDE.

ONE CHOICE IS TO LET DDT SIT
RIGHT ON TOP OF DOS, AND IN A
SENSE, BE AN EXTENSION OF IT.

IN THIS CASE THE ORG STATEMENT
SETS DDT TO BEGIN RIGHT WHERE
DOS STOPS. NOTE THIS IS THE
STANDARD 2 DISK DRIVE DOS
CONFIGURATION.

IF YOU HAVE SPECIAL CONDITIONS
(FEWER DISK DRIVE BUFFERS, THE
850 ON, ...) THEN CHANGE THE
ORG TO SUIT YOUR TASTE.

ORG $ICFC

************.***************.*************************************.*******.*****.******************

STEP 2

NOW YOU HAVE TO MAKE SURE THE
DDT CODE IS ASSEMBLED.
HERE, IT IS ASSUMED THAT ALL
THE NECESSARY FILES ARE LOCATED
ON DRIVE I.

YOU CAN CHANGE THE FILE
DESIGNATORS HOWEVER, TO FIT
YOUR DEVELOPMENT SYSTEM.

PROC
DDT

INCLUDE D:DDT.MAC

22 Appendix - Technical details

•

•

STEP 3

THE NEXT FILE ISTHE DISPLAY LIST
AND SCREEN AREA FOR DDT.

THIS CODE TAKES UP JUST UNDER I K
OF MEMORY SPACE, AND HAS SOME
BOUNDARY CROSSING RESTRICTIONS.

NOTE THAT THE FOLLOWING ORG
STATEMENT ASSURES THAT THE DISPLAY
LIST DOES NOT CROSS A I K BOUNDARY
AND THAT THE SCREEN MEMORY DOES
NOT CROSS A 4K BOUNDARY.

IF YOU WANT TO MOVE THE SCREEN
FOR ANY REASON, MODIFY THIS
STATEMENT.

NOTE ALSO THAT THE ICODE LABEL
IS USED TO DEFINE A SPOT TO
STORE INITIALIZATION CODE.
9 BYTES ARE SAVED FOR THIS

IF (((((((HIGH *1141+ 1)* 1024)·*) < 33) OR ((((((HIGH *118+ 1)* 1024·*)
ORG (((HIGH *1141+ 11*1024
ENDIF

INCLUDE D:DDTLST.MAC
EPROC

ICODE -*

ORG *+9

•

STEP 4

THE DDT INITIALIZATION CODE SETS
UP A ROUTINE THAT MODIFIES THE
MEMLO POINTER WHENEVER THE RESET
BUTTON IS PRESSED.

NORMALLY THIS IS USED TO "HIDE"
THE DDT CODa AND MAKE THE FREE
MEMORY AREA START JUST AFTER DDT

TO MODIFY THIS SET UP YOU WILL
HAVE TO DEFINE AN ECODE VALUE TO
BE PLACED IN THE MEMLO POINTER.

ONE SUGGESTION WOULD BE TO SIMPLY
PUT THE NORMAL VALUE THAT WOULD
BE THERE ANYWAY.

FOR INSTANCE IN THE STANDARD DOS
CONFIGURATION, YOU MIGHT PUT
ECODE = S I CFC

Appendix - Technicaldetails 23

STEPS

NOW YOU HAVE TO ATTACH YOUR OWN
CODE. A COUPLE OF THINGS SHOULD
BE NOTED.

1. YOU SHOULD REMOVE ANY ORG
STATEMENTS FROM YOUR CODE
AND PLACE THEM HERE.
WITH NO NEW ORG STATEMENT,
YOUR CODE WILL FOLLOW THE
DDT CODE. CURRENTLY THAT
MEANS YOUR CODE WOULD START
AROUND S3715

2. REMOVE ANY END STATEMENT FROM
YOUR PROGRAM. IF NOT, IT WILL
DEFINITELY SCREW THINGS UP.

ORG YOURORG
INCLUDE D:YOURPROG

STEP 6

IF YOU WANT TO DEFINE A MINI
SYMBOL TABLE, THIS IS THE SPOT.
THE ORG STATEMENT SHOULD SET THE
ORG TO WHEREVER DDT IS +3

RECALL THAT EACH SYMBOL NEEDS TO
BE DEFINED LIKE:

•

•

24 Appendix - Technical details

DB
OW
DB

'SYMBOL'
SYMBOL
1

ORGDDT+3
DB
OW 0
DB 1

;6 CHARACTERS
;SYMBOL LOCATION
;A lOR 2

'. ***

STEP 7
NOW YOU HAVE TO TELL THE SYSTEM
WHERE TO GO TO RUN THE CODE

THE STRUCTURE WE HAVE HERE WILL
INITIALIZE DDT, CALL DDT TO
ALLOW YOU TO SET UP INITIAL
BREAKPOINTS, AND THEN JUMP TO
THE START OF YOUR CODE.

ORG ICODE
JSR DDTI ;INITIALIZE DDT
JSR DDT ;ENTER DDT
JMP YOURORG ;AND RUN YOUR CODE

END ICODE

•

**

Appendix - Technical details 25

•
PROGRAM

p,o, Box 3705
Santa Clara, CA 95055

Review Form

We're interested in your experiences with APX programs
and documentation, both favorable and unfavorable.
Many of our authors are eager to improve their programs
if they know what you want. And, of course, we want to
know about any bugs that slipped by us, so that the
author can fix them. We also want to know whether our

1. Name and APX number of program.

instructions are meeting your needs. You are our best
source for suggesting improvements! Please help us by
taking a moment to fill in this review sheet. Fold the sheet
in thirds and seal it so that the address on the bottom of
the back becomes the envelope front. Thank you for
helping us!

•

•

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program's weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

6. On ascale of 1 to 10,1 being "poor" and 10being "excellent", please rate the following aspects of this program:

___ Easy to use
___ User-oriented (e.g., menus, prompts, clear language)
___ Enjoyable
___ Self-instructive
___ Useful (non-game programs)
___ Imaginative graphics and sound

From

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing "poor" and 10 representing "excellent", how would you rate the user
instructions and why?

11. Other comments about the program or user instructions:

ATARI Program Exchange
P.O. Box 3705
Santa Clara, CA 95055

[seal here]

•

•

•

